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The collective dynamics of coupled oscillators has been well studied in fully occupied networks, but little
attention has been paid to the case of partially occupied networks. We study this problem by a dynamic
bipartite model and focus on the influence of population mobility. We find that when the density of occupied
nodes is smaller than the percolation threshold �c, the order parameter will show an effect of mobility with
optimal value at a medium moving probability. Its mechanism can be revealed through three factors, i.e., the
size of the largest component, the mixing degree in individual components, and the frequency of exchange
information among components. When the density of occupied nodes is larger than �c, the moving probability
will act as a bifurcation parameter to synchronization. The effect of mobility also exists for other dynamics
such as the epidemic spreading where the effect is shown through the number of infected agents.
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The complex networks are ubiquitous in nature and have
been intensively studied in the past decade �1–4�. It is found
that the dynamics on networks can be seriously influenced by
the network structure. Two important dynamics among them
are the synchronization and epidemic spreading. Suppose
each node is occupied by one oscillator. It is revealed that the
synchronization on a network is determined by the coupling
matrix, the dynamical function of oscillator, and the coupling
strength �4� and can be used to explain some biological phe-
nomena such as the hearing sensitivity on weak signals �5�.

When the nodes are occupied by agents, the attention is
paid on the epidemic spreading �1–3�. There are two frame-
works of epidemic spreading: static and dynamic. For the
former, each node is occupied by one agent and the virus/
disease can be only transmitted through the links to the
nearest-neighboring nodes of the infected ones. An important
result is that the epidemic can spread to the entire network
even when the probability of transmission is infinitely small
for a scale-free �SF� network �6�. For the latter, a node can be
occupied by multiple agents and the agents can move from
one node to another through the links �7–11�. The used
model is thus called reaction-diffusion model where the con-
tagious process occurs only within the agents staying at the
same node and the epidemic spread out by the diffusion pro-
cess �9�.

Although the study of the influence of network structure
on dynamics has achieved great success, the considered in-
teraction is sometimes questionable or far from reality. For
example, Ref. �12� shows how to figure out a social-contact
network by tracking the paths of agents. Agents may take
different activities in different time intervals such as home,
work, school, and social/recreational activities. Simplifying
the visited locations as nodes and the paths as links, the
social-contact network is obtained �12�. Thus, agents’ activi-
ties on this network become a bipartite graph, which is very
convenient for the study of the epidemic spreading �9–14�.
However, as the links of a node do not exist at the same time
but in different time periods, it is not reasonable to let all the
links of a node take effect at the same time. Another example
is the sex contact network where the different links of a node
may come from different time periods; i.e., the old sex rela-
tionship may break up when the new sex relationship is es-

tablished �15�. Thus, it is artificial to let all the links have the
same probability to transmit disease at the same time. How
to precisely represent the dynamics on such time-dependent
links is an open question.

Furthermore, we may often observe another situation
where the nodes are occupied in one time and empty in an-
other time such as the cafeterias and conference halls in the
school network. A direct evidence coming from the spread-
ing of Bluetooth viruses through mobile phone users is stud-
ied �11�. For these situations, the nodes are partially occupied
and the occupied status depends on time. It is thus interesting
to know what the dynamics is on these networks. For this
purpose, we here consider the case that each individual node
can be occupied by at most one oscillator/agent and the den-
sity of occupied nodes is less than unity. We surprisingly find
that when the density of occupied nodes is smaller than the
percolation threshold �c, an effect of mobility will show up
with optimal value at a medium moving probability. Its
mechanism can be revealed through three factors, i.e., the
size of giant component, the mixing degree in components,
and the frequency of exchange information among compo-
nents. When the density of occupied nodes is larger than �c,
the moving probability will act as a bifurcation parameter to
synchronization. The effect of mobility is not only for the
coupled oscillators, but also for other dynamics such as the
epidemic spreading.

We first construct a SF Barabasi and Albert �BA� network
with degree distribution P�k��k−3 and average degree �k�
=6 �i.e., m=3 in �1��. Then we randomly choose N nodes
from the constructed network with size L and let each one be
occupied by one oscillator. The density of occupied nodes is
�=N /L�1. We assume that at each time step, each oscillator
will randomly move to one of its empty neighbors with prob-
ability p provided that there is at least one empty neighbor
there. The status of all the oscillators is parallel updated. In
detail, we let each oscillator be a Kuramoto phase oscillator
and thus the coupled oscillators can be expressed as

�̇i = �i + ��
j=1

ki

aij�t�sin�� j − �i� , �1�

where i=1,2 , . . . ,L, ki is the degree of node i, � is the cou-
pling strength, �i is random uniformly distributed in
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�−1,1�, aij�t�=1 if both the nodes i and j are connected and
occupied at the same time and aij�t�=0 otherwise. We find
that after the transient process, the collective behavior of the
coupled oscillators is uncorrelated for small coupling
strength and correlated for large coupling strength. To mea-
sure the correlation we introduce the order parameter

r�t�ei��t� =
1

�L
�
j=1

�L

ei�j�t�, �2�

where ��t� is the average phase at time t and r�t� represents
the degree of correlation among all the � j. We have r�t�=1 if
all the oscillators are synchronized and r�t�=0 if they are
uncorrelated. Considering the time dependence of r�t�, we let

R = lim
T→�

1

T�
t=1

T

r�t� �3�

be the order parameter.
When the density � is small, the oscillators will form a

number of isolated components. With the increase in �, the
components will merge and form larger components �16�. A
giant component will appear when � becomes larger than a
threshold �c, which is equivalent to a percolation problem.
This merging process is independent of the concrete dynam-
ics on the network. The value of �c can be estimated as
follows. Suppose the number of occupied neighbors of a
node is k�. Considering that the decrease in density is equiva-
lent to the decrease in the average �k��, the condition for the
appearance of �c can be figured out by the percolation of
occupied bond. For a random network, Newman et al.
showed that the condition of phase transition at which a giant
component first appears is �k�k��k�−2�P�k��=0 �14�, where
P�k�� is the degree distribution. This condition means �k��
=2. On the other hand, the existence of a giant component is
equivalent to construct a BA network by a minimum m, i.e.,
m=1, which also means �k��=2. Thus, for the partially oc-
cupied network with m�1 we have 2mL�c=2L, which gives
�c=1 /m. In this paper, we let the BA network have L
=1000 and �k�=6 �i.e., m=3� if without specific illustration,
thus, �c=1 /3.

The synchronization for the case of �=1 has been well
studied �4,16�. In this paper, we focus on the situation around
�c. When ���c, there is no giant component and the number
of components may change with time. Suppose the N oscil-
lators at time t are separated into M components. In each
component we have

�̇i
x = �i

x + ��
j=1

ki

aij�t�sin�� j
x − �i

x� , �4�

where x=1,2 , . . . ,M. The r�t� in Eq. �2� is an average on the
components and can be rewritten as

r�t�ei��t� = �rx�t�ei�x�t�� =
1

N
�
x=1

M

Nxrx�t�ei�x�t�, �5�

where rx�t�, �x�t�, and Nx are the order parameter, average
phase, and size of component x, respectively. Therefore, the
R in Eq. �3� is an average on the components. For larger M,

there will be more different �x�t� and thus smaller r�t�, and
vice versa, indicating that the merging of components will
increase R and the decomposing will decrease R.

Let us do numerical simulations as follows. After the tran-
sient process of Eq. �1�, we calculate its order parameter R
according to Eq. �3�. We interestingly find that R will in-
crease with p and then decrease with the further increase in
p; i.e., there is an optimal p. Figure 1 shows the results for
	=0.5 and ���c, where the “squares” and “circles” repre-
sent the cases of �=0.2 and 0.3, respectively.

What is the mechanism of the existence of optimal p? To
find the answer, we divide the system variations caused by p
into three parts: the varying of the average size of the largest
component Smax or the varying of the average number of
components Ncom, the exchanging information between com-
ponents, and the mixing in individual components. Let us
first check the varying of Smax and Ncom. We find that there is
a common optimal region of p for both Smax and Ncom where
Smax shows maximum while Ncom shows minimum. The in-
verse relationship between Smax and Ncom is easy to be un-
derstood as the decrease in Smax will result in more small
clusters and thus the increase in Ncom. Figure 2 shows the
results where the squares and circles represent the cases with
�=0.2 and 0.3, respectively. Substituting these results into

FIG. 1. �Color online� R versus p with network size L=1000
and average degree �k�=6, where the squares and circles represent
the cases of �=0.2 and 0.3, respectively.

FIG. 2. �Color online� The average size of the largest compo-
nent Smax and the average number of components Ncom in Fig. 1,
where the squares and circles represent the cases with �=0.2 and
0.3, respectively.
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Eq. �5� we see that the existence of optimal Smax and Ncom on
p will result in the existence of optimal R on p indicating the
consistence between R and Smax.

Theoretically, we may explain the existence of optimal
Smax on p as follows. For the case of small p, the number of
moving oscillators from a component at each time step is
small. Once the largest component is formed, it will be sus-
tained for a relatively long time. Its evolution can be given as
follows. At each time step, the number of moving oscillators
in Smax will be pSmax and the number of nonmoving oscilla-
tors is �1− p�Smax. Considering that the moving oscillators
can only go to their neighbors at one time step, the new
destinations of the pSmax can be classified into two parts: one
part is still connected with the �1− p�Smax and is thus propor-
tional to the occupied area of the �1− p�Smax; the other is
disconnected with the �1− p�Smax and can be expressed as
pSmax�1− �1− p�Smax /Smax�= p2Smax. The second part will be
really lost from the component. At the same time, some
small components Si or moving oscillators from Si may join
Smax by a probability p1, which is proportional to the occu-
pied area of the �1− p�Smax. Thus, we have

dSmax

dt
= − p2Smax + Sic1�1 − p�Smax, �6�

where c1 is a coefficient. Letting dSmax /dt=0 and Si
	c2Smax with c2�1, we obtain the stationary solution

Smax =
p2

c1c2�1 − p�
. �7�

From Eq. �7� one can easily see that Smax increases with p
confirming the increasing parts in Fig. 2�a� for small p.

When p is relatively large, the moving part pSmax will not
be a small part of Smax and thus may make the component
Smax decompose into small components. In this sense, the
largest component Smax cannot be sustained resulting in the
decrease in Smax. This is the decreasing part in Fig. 2�a� for
larger p.

Then we check the effect of the exchanging information
between components. Considering that information is trans-
mitted by the moving oscillators, we design a small network
to illustrate the influence of exchanging information between
components, which consists of two subnetworks with the
same size Ls=100. The connection between the two subnet-
works is implemented by a moving oscillator called messen-
ger. Thus, the total size of the network is 201. In each sub-
network, the oscillators are located on a circle with the
nearest neighboring coupling by a coupling strength �1. We
let all the oscillators satisfy Eq. �1� and let their �i be uni-
formly distributed in �0,1�. The messenger has �=0.5. When
the messenger is located at one subnetwork, it will contact all
the oscillators there by a coupling strength �2 and have a
possibility p to move to the other one and vice versa. The
inset of Fig. 3�a� shows its schematic figure. As the oscilla-
tors are nonidentical, the correlations in the two subnetworks
will be different. The messenger will make the average
phases of the two subnetworks close to each other; thus, the
increase in p will increase the order parameter R. Figure 3�a�
shows the result for �1=0.2 and �2=0.5.

Finally, we check the case of mixture in individual com-
ponents. Take one component as an example. We produce a
small BA network with Ls=200 as the component and let
every node be occupied by an oscillator of Eq. �1�. The �i
are uniformly distributed in �−1,1� and the coupling strength
is taken as �=0.3. To simulate the mixing process, at each
time step, we let every oscillator change its location with one
of its neighbors with probability p. We find that R increases
monotonously with p. Figure 3�b� shows the result. In sum,
both the exchanging information between components and
the mixing in individual components will increase R. Thus,
the decreasing part of Fig. 1 is only from the decreasing part
of Smax in Fig. 2�a�. That is, the existence of optimal Smax is
the main reason for the existence of optimal R on p.

Now, let us move to the case that the density of oscillators
� is slightly larger than the threshold �c, where a giant com-
ponent may appear. In this situation, we find a very interest-
ing result; i.e., the moving probability p acts as a bifurcation
parameter and results in a phase synchronization when p is
relatively large. Figure 4�a� shows the result for BA network
with size Ls=100, where 
i= ��̇i�. For comparison, we also
put the results of how 
i changes with the density � and
coupling strength � there. It is easy to see that p has the same
function with � and �. We have also made numerical simu-

FIG. 3. �Color online� �a� How the exchanging information be-
tween two subnetworks influences R; see text for details. �b� How
the mixing in a component influences R.

FIG. 4. �a� 
i versus p for �=0.5 and �=0.4; �b� 
i versus � for
�=0.5 and p=0.01; �c� 
i versus � for �=0.4 and p=0.01.
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lations on random networks and found the similar resonance
effect and bifurcation diagram.

We have to point out that the observed effect of mobility
is not only for the phase oscillators but also works for other
dynamics such as the epidemic spreading. To illustrate it,
we replace Eq. �1� by the susceptible-infected-susceptible
�SIS� model �6,17� to describe the infectious process. In the
SIS model, nodes can be in two distinct states: healthy and
ill. Suppose the susceptible has a probability � of contagion
with each infected neighbor. If the node i is susceptible, and
that it has ki neighbors, of which kinf are infected, then at
each time step node i will become infected with probability
�1− �1−��kinf�. At the same time, each infected node will
become susceptible at rate � at each time step. To be brief,
let us set �=1. Figure 5 shows the results on the BA network
used in Fig. 1 where �=0.5 and the squares and circles rep-
resent the density of oscillators �=0.2 and 0.3, respectively.
Obviously, the final infected population I shows the effect of
mobility, i.e., the existence of optimal I on p.

In conclusion, we have studied the moving of oscillators
in a partially occupied BA network and found an effect of
mobility. This result is not only limited to the phase of os-
cillators but also works for the epidemic spreading. Consid-
ering that the partially occupied networks are ubiquitous in
biology, social contact, and physical networks, our results

may open a window to them in contrast to the previous stud-
ies on fully occupied networks.

Z.L. is indebted to Professor Munakata for stimulating
discussions and great hospitality. This work was supported
by the NNSFC under Grant Nos. 10775052, 10975053, and
10635040, and by the National Basic Research Program of
China �973 Program� under Grant No. 2007CB814800.

�1� R. Albert and A.-L. Barabási, Rev. Mod. Phys. 74, 47 �2002�.
�2� S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, and D.-U.

Hwang, Phys. Rep. 424, 175 �2006�.
�3� S. N. Dorogovtsev, A. V. Goltsev, and J. F. F. Mendes, Rev.

Mod. Phys. 80, 1275 �2008�.
�4� A. Arenas, A. Diaz-Guilera, J. Kurths, Y. Moreno, and C.

Zhou, Phys. Rep. 469, 93 �2008�.
�5� J. A. Acebrón, S. Lozano, and A. Arenas, Phys. Rev. Lett. 99,

128701 �2007�; Z. Liu and T. Munakata, Phys. Rev. E 78,
046111 �2008�; F.-M. Lu and Z.-H. Liu, Chin. Phys. Lett. 26,
040503 �2009�.

�6� R. Pastor-Satorras and A. Vespignani, Phys. Rev. Lett. 86,
3200 �2001�; Phys. Rev. E 63, 066117 �2001�; 65, 035108�R�
�2002�.

�7� L. Hufnagel, D. Brockmann, and T. Geisel, Proc. Natl. Acad.
Sci. U.S.A. 101, 15124 �2004�.

�8� A. Gautreau, A. Barrat, and M. Barthelemy, J. Stat. Mech.:
Theory Exp. �2007�, L09001.

�9� V. Colizza, R. Pastor-Satorras, and A. Vespignani, Nat. Phys.
3, 276 �2007�; V. Colizza and A. Vespignani, Phys. Rev. Lett.
99, 148701 �2007�; J. Theor. Biol. 251, 450 �2008�.

�10� M. Tang, L. Liu, and Z. Liu, Phys. Rev. E 79, 016108 �2009�;
M. Tang, Z. Liu, and B. Li, Europhys. Lett. 87, 18005 �2009�;
J. Zhou and Z. Liu, Physica A 388, 1228 �2009�.

�11� M. C. González, C. A. Hidalgo, and A.-L. Barabási, Nature
�London� 453, 779 �2008�.

�12� S. Eubank, H. Guclu, V. S. A. Kumar, M. V. Marathe, A.
Srinivasan, Z. Toroczkai, and N. Wang, Nature �London� 429,
180 �2004�.

�13� G. Chowell, J. M. Hyman, S. Eubank, and C. Castillo-Chavez,
Phys. Rev. E 68, 066102 �2003�.

�14� M. E. J. Newman, S. H. Strogatz, and D. J. Watts, Phys. Rev.
E 64, 026118 �2001�.

�15� F. Liljeros, C. R. Edling, L. A. N. Amaral, H. E. Stanley, and
Y. Aberg, Nature �London� 411, 907 �2001�.

�16� J. Gómez-Gardeñes, Y. Moreno, and A. Arenas, Phys. Rev. E
75, 066106 �2007�; this paper reveals a similar merging pro-
cess on the giant synchronized component for fully occupied
networks, where the changing parameter is the coupling
strength.

�17� Z. Liu and B. Hu, Europhys. Lett. 72, 315 �2005�.

FIG. 5. �Color online� I versus p in the network used in
Fig. 1.

ZONGHUA LIU PHYSICAL REVIEW E 81, 016110 �2010�

016110-4


